Based in Maryland, is REVOLUTIONIZINg the world, one post at a time. With topics ranging from Biology to Multivariable Calculus, this website covers the entire academic spectrum.

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus

There are two parts of the Fundamental Theorem of Calculus:

Part One

MathJax TeX Test Page $$\int_{a}^{b}{f(x)}\, \mathrm{d}x = F(a) - F(b) \text{ where F(x) is the antiderivative of f(x)}$$

Part Two

MathJax TeX Test Page $$\text{If } F(x) = \int_{a}^{x}\mathrm{f(t)}\, \mathrm{d}t\text{, then } \frac{d}{dx} F(x) = f(x)$$

Integral with Functions as Bounds

One Bound

MathJax TeX Test Page $$\text{Calculate } \frac{d}{dx} \int_{a}^{h(x)}{f(t)}\, \mathrm{d}t$$ $$\text{Let } G(x) = \int_{a}^{x}{f(t)}\, \mathrm{d}t$$ $$G(h(x)) = \int_{a}^{h(x)}{f(t)}\, \mathrm{d}t$$ $$\frac{d}{dx}G(h(x)) = G'(h(x))h'(x)$$ $$=f(h(x))h'(x)$$

Two Bounds

MathJax TeX Test Page $$\text{Calculate } \frac{d}{dx} \int_{g(x)}^{h(x)}{f(t)}\, \mathrm{d}t$$ $$\text{Just split it up: } \frac{d}{dx}(-\int_{a}^{g(x)}{f(t)}\, \mathrm{d}t + \int_{a}^{h(x)}{f(t)}\, \mathrm{d}t)$$ $$-f(g(x))g'(x) + f(h(x))h'(x)$$ $$=f(h(x))h'(x) - f(g(x)g'(x)$$

No Bounds

The derivative is 0, because that's just a constant. 


MathJax TeX Test Page $$\text{Calculate } \frac{d}{dx} \int_{x}^{x^3}{sin(t)}\, \mathrm{d}t$$ $$\text{From the second definition, it equals } 3t^2\sin{t^3} - \sin{t}$$
David Witten

Taylor Polynomials

Testing for Convergence and Divergence