Inspiration
Background
Converting Between Bases
Some Practice
The first thing we should realize is this is a different type of problem. We have both bases described using a third basis: the elementary basis. So we have to compute: $$\underset{B \leftarrow E}{\mathcal{P}}*\underset{E \leftarrow C}{\mathcal{P}} \text{ and its inverse}$$ $$\underset{E \leftarrow C}{\mathcal{P}} = \begin{bmatrix}1 & -2\\-5 & 2 \end{bmatrix}$$ $$\underset{B \leftarrow E}{\mathcal{P}} = \underset{E \leftarrow B}{\mathcal{P}}^{-1} = \begin{bmatrix}7 & -3 \\ 5 & - 1\end{bmatrix}^{-1} = \frac{1}{8}\begin{bmatrix}-1 & 3 \\ -5 & 7\end{bmatrix}$$ $$\underset{B \leftarrow C}{\mathcal{P}} = \begin{bmatrix}-2 & 1\\-5 & 3\end{bmatrix}$$
Change of Basis Formula
Back to our original problem
Let's say we want to answer this question: What do you get when you project the vector $\begin{bmatrix}3 \\ 2 \\ 1\end{bmatrix}$ onto the plane $x - y + z = 0$?
The elementary basis has the $\begin{bmatrix}0\\0\\1\end{bmatrix}$ as the normal vector to its plane, and it has $\begin{bmatrix}1\\0\\0\end{bmatrix}$,$\begin{bmatrix}0\\1\\0\end{bmatrix}$ as the other vectors that comprise the vector space. If we consider a point $\begin{bmatrix}x\\y\\z\end{bmatrix}$, the projection onto the plane is $\begin{bmatrix}x\\y\\0\end{bmatrix} = \begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}$.
In the same way, if we consider a coordinate system based around that plane, with $b_1 = \begin{bmatrix}1\\1\\0\end{bmatrix}, b_2 = \begin{bmatrix}0 \\ 1\\ 1\end{bmatrix}$, our new "x" and "y" vectors, and $b_3 = \begin{bmatrix}1\\-1\\1\end{bmatrix}$, then the projection of $\begin{bmatrix}a\\b\\c\end{bmatrix}_{\mathcal{B}} = \begin{bmatrix}a\\b\\0\end{bmatrix}_{\mathcal{B}}$
Here is our plan: we will convert a point in our elementary basis to $\mathcal{B}$, calculate the projection, then convert back into $\mathcal{E}$ $$y = \underset{E \leftarrow B}{\mathcal{P}}T\underset{B \leftarrow E}{\mathcal{P}}*x$$ $$y = \underset{E \leftarrow B}{\mathcal{P}}T\underset{E \leftarrow B}{\mathcal{P}}^{-1}*x$$ As we showed before, $\underset{E \leftarrow B}{\mathcal{P}}$ is just $\begin{bmatrix}b_1]_{\mathcal{E}} & [b_2]_{\mathcal{E}} & [b_3]_{\mathcal{E}}\end{bmatrix} = \begin{bmatrix}1&0&1\\1&1&-1\\0&1&1\end{bmatrix}$ We have our final answer $$y = \begin{bmatrix}1&0&1\\1&1&-1\\0&1&1\end{bmatrix}\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}\begin{bmatrix}1&0&1\\1&1&-1\\0&1&1\end{bmatrix}^{-1}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$$ $$y = \dfrac{1}{3}\begin{bmatrix}2&1&-1\\1&2&1\\-1&1&2\end{bmatrix}x$$ Let's plug in $x = \begin{bmatrix}3\\2\\1\end{bmatrix}$, we get $$y = \begin{bmatrix}\frac{7}{3}\\\frac{8}{3}\\\frac{1}{3}\end{bmatrix}$$ We can do two things to check this is a valid point. First, we can plug our point into the plane and we see that it works. Second, notice that $\frac{2}{3}\begin{bmatrix}1\\-1\\1\end{bmatrix} + y = x$, meaning x is directly above y, which is what we want.