MathJax TeX Test Page
To demonstrate how to find the column space of a matrix, it is good to demonstrate through an example
$$A = \begin{bmatrix}2 & 4 & -2 & 1\\-2 & -5 & 7 & -5\\3 & 7 & -8 & 5.5\end{bmatrix}$$
We want to see when we get a solution for $Ax = b$. This is possible if we create an augmented matrix.
$$\begin{bmatrix}2 & 4 & -2 & 1 & b_1\\-2 & -5 & 7 & -5 & b_2\\3 & 7 & -8 & 5.5 & b_3\end{bmatrix} \to \begin{bmatrix}2 & 4 & -2 & 1 & b_1\\0 & -1 & 5 & -4 & b_1 + b_2\\3 & 7 & -8 & 5.5 & b_3\end{bmatrix}$$
$$ \to \begin{bmatrix}2 & 4 & -2 & 1 & b_1\\0 & -1 & 5 & -4 & b_1 + b_2\\0 & 1 & -5 & 4 & b_3 - \frac{3}{2}b_1\end{bmatrix} \to
\begin{bmatrix}2 & 4 & -2 & 1 & b_1\\0 & -1 & 5 & -4 & b_1 + b_2 \\0 & 0 & 0 & 0 & b_3 + b_2 - \frac{1}{2}b_1\end{bmatrix}$$
This only works when the augmented matrix is consistent. That means each equation is value (No $0 = 3$ or something). So, you know $$b_1 = 2b_2 + 2b_3 \to \begin{bmatrix}2b_2 + 2b_3\\b_2\\b_3\end{bmatrix} = b_2\begin{bmatrix}2\\1\\0\end{bmatrix} + b_3\begin{bmatrix}2\\0\\1\end{bmatrix}$$
$b_2$ and $b_3$ can be anything. The only restriction is it has to be a real number. So, the column space of A is
$$\text{Span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix}, \begin{bmatrix}2\\0\\1\end{bmatrix}\right)$$