MathJax TeX Test Page
$$\int\mathrm{\sqrt{9-x^2}}\, \mathrm{d}x$$
$$\text{Now, we can do something cool. Look at the triangle below}$$
$$\text{We can let} \cos{\theta{}} = \frac{\sqrt{9 - x^2}}{3}\text{,so } 3\cos{\theta{}} = \sqrt{9 - x^2}$$
$$\text{We still need a dx, so } x = 3\sin{\theta}, dx = 3\cos{\theta}$$
$$\text{Now, we can make a new integral} \int\mathrm{9\cos^2{\theta{}}}\, \mathrm{d}\theta{}$$
$$\text{Now, we just have to evaluate } \cos^2{\theta{}} = \frac{1}{2} + \frac{\cos{2\theta{}}}{2}$$
$$\frac{9}{2}\int\mathrm{\cos{2\theta{}} + 1}\, \mathrm{d}\theta=\frac{9}{2}(\frac{\sin{2\theta}}{2} + \theta{}) + C=\frac{9}{2}(\sin{\theta{}}\cos{\theta{}} + \theta{}) + C$$
$$=\frac{9}{2}(\frac{x}{3}\frac{\sqrt{9 - x^2}}{3} + \arcsin{\frac{x}{3}}) + C$$
$$=\frac{1}{2}(x\sqrt{9 - x^2} + 9\arcsin{\frac{x}{3}}) + C$$