MathJax TeX Test Page
$$\text{Calculate } \frac{d}{dx} \int_{x}^{x^3}{sin(t)}\, \mathrm{d}t$$
Let F be the antiderivative of sin(t). So, this expression equals
$$\dfrac{d}{dx}\left(F(x^3) - F(x)\right)$$
$$3x^2F'(x^3) - F'(x)$$
Recall F is the antiderivative of $\sin(t)$, so $F' = sin(t)$.
$$\boxed{3x^2\sin(x^3) - \sin(x)}$$
$$\text{Calculate } \frac{d}{dx} \int_{\sqrt{x}}^{x^2} \sqrt{t}\cos(t)\, \mathrm{d}t$$
Let F be the antiderivative of $\sqrt{t}\cos(t)$. This expression equals:
$$\dfrac{d}{dx}\left(F(x^2) - F(\sqrt{x})\right)$$
$$2xF'(x^2) - \dfrac{1}{2\sqrt{x}}*F'(\sqrt{x})$$
$$2x*\sqrt{x^2}\cos(x^2) - \dfrac{1}{2\sqrt{x}}x^{1/4}\cos(\sqrt{x})$$
$$\boxed{2x^2\cos(x^2) - \frac{1}{2}x^{-1/4}\cos(\sqrt{x})}$$